Abstract

We have quantitatively analyzed the microsolvation effect on the central barriers of microsolvated bimolecular nucleophilic substitution (SN2) reactions by means of a two-step energy decomposition procedure. According to the first energy decompositions, an obvious increase in the central barrier for a microsolvated SN2 reaction against its unsolvated counterpart can be mainly ascribed to the fact that the interaction between the solute and the conjunct solvent becomes less attractive from the reactant complex to the transition state. On the basis of the second energy decompositions with symmetry-adapted perturbation theory, this less attractive interaction in the transition state is primarily due to the interplay of the changes in the electrostatic, exchange, and induction components. However, the contribution of the change for the dispersion component is relatively small. A distinct linear correlation has also been observed between the changes of the total interaction energies and those of the corresponding electrostatic components for the microsolvated SN2 reactions studied in this work. Moreover, the two-step energy decomposition procedure employed in this work is expected to be extensively applied to the gas phase reactions mediated by molecules or clusters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call