Abstract

The mass splitting of elliptic anisotropy ($v_2$) at low transverse momentum is considered as a hallmark of hydrodynamic collective flow. We investigate a multiphase transport (AMPT) model where the $v_2$ is mainly generated by an anisotropic escape mechanism, not of the hydrodynamic flow nature, and where mass splitting is also observed. We demonstrate that the $v_2$ mass splitting in AMPT is small right after hadronization (especially when resonance decays are included); the mass splitting mainly comes from hadronic rescatterings, even though their contribution to the overall charged hadron $v_2$ is small. These findings are qualitatively the same as those from hybrid models that combine hydrodynamics with a hadron cascade. We further show that there is no qualitative difference between heavy ion collisions and small system collisions. Our results indicate that the $v_2$ mass splitting is not a unique signature of hydrodynamic collective flow and thus cannot distinguish whether the elliptic flow is generated mainly from hydrodynamics or the anisotropic parton escape.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call