Abstract

This study assesses the causes of the high spatial variability of the mineral content of groundwater in crystalline bedrock of Southern Madagascar. Although many kilometres from the coast and at a mean altitude of 400 m a.s.l, wells drilled in this area produce water with electrical conductivities in the range of 300–30,000 μS cm −1 with a high spatial variability. Chemical and isotopic data are used to identify the processes involved in the groundwater mineralization. It is shown that the chemical composition of the groundwater in this region has its origin in (i) normal silicate and carbonate weathering reactions and (ii) input of marine salts, probably via rainfall recharge, modified by evapo-concentrative processes probably including precipitation and re-dissolution of secondary evaporites in the unsaturated zone. To obtain a better understanding of the spatial salinity distribution, well parameters such as yields, weathered zone thickness, weathered materials and morphological positions (upper slope, mid-slope, lower slope or valley bottom) are scrutinized. A correlation was found between high salinity and low flow, shallow groundwater environments (flat hill tops, valley bottoms, weakly developed and clayey weathered zones) and between low salinity and high flow environments (granular, well-developed weathered zones and situation on valley slopes).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.