Abstract

As a lead-free material, GeTe has drawn growing attention in thermoelectrics, and a figure of merit (ZT) close to unity was previously obtained via traditional doping/alloying, largely through hole carrier concentration tuning. In this report, we show that a remarkably high ZT of ∼1.9 can be achieved at 773 K in Ge0.87Pb0.13Te upon the introduction of 3 mol % Bi2Te3. Bismuth telluride promotes the solubility of PbTe in the GeTe matrix, thus leading to a significantly reduced thermal conductivity. At the same time, it enhances the thermopower by activating a much higher fraction of charge transport from the highly degenerate Σ valence band, as evidenced by density functional theory calculations. These mechanisms are incorporated and discussed in a three-band (L + Σ + C) model and are found to explain the experimental results well. Analysis of the detailed microstructure (including rhombohedral twin structures) in Ge0.87Pb0.13Te + 3 mol % Bi2Te3 was carried out using transmission electron microscopy and crystallographic group theory. The complex microstructure explains the reduced lattice thermal conductivity and electrical conductivity as well.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.