Abstract

FeOx-supported gold nanocatalyst is one of the most active catalysts for low-temperature CO oxidation. However, the origin of the high activity is still in debate. In this work, using a combination of surface-sensitive in situ FT-IR, Raman spectroscopy, and microcalorimetry, we provide unambiguous evidence that the surface lattice oxygen of the FeOx support participates directly in the low-temperature CO oxidation, and the reaction proceeds mainly through a redox mechanism. Both the presence of gold and the ferrihydrite nature of the FeOx support promote the redox activity greatly. Calcination treatment has a detrimental effect on the redox activity of the Au/FeOx, which in turn decreases greatly the activity for low-temperature CO oxidation. The gold-assisted redox mechanism was also extended to other metal-supported FeOx catalysts, demonstrating the key role of the FeOx support in catalyzing the CO oxidation reaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.