Abstract

Cobalt catalysts undergo a massive reconstruction under Fischer–Tropsch conditions, resulting in the formation of uniform nanoislands. It is unclear what drives the formation of these islands, since it is highly unfavorable for clean surfaces. Using density functional theory, we show that the formation of islands and steps is driven by the embedding of carbon in an unusual square-planar form at the B5 step sites. Though carbon is not a typical oxidant for metals, it oxidizes cobalt at those sites. This strengthens CO adsorption, which further favors the formation of islands and steps. The oxidation of cobalt by carbon is predicted to be experimentally detectable as a 2 eV shift in the Co 2p binding energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.