Abstract

The early-R stars are carbon-rich K-type giants. They are enhanced in C12, C13 and N14, have approximately solar oxygen, magnesium isotopes, s-process and iron abundances, have the luminosity of core-helium burning stars, are not rapid rotators, are members of the Galactic thick disk and, most peculiarly of all, are all single stars. Conventional single-star stellar evolutionary models cannot explain such stars, but mergers in binary systems have been proposed to explain their origin. We have synthesized binary star populations to calculate the number of merged stars with helium cores which could be early-R stars. We find many possible evolutionary channels. The most common of which is the merger of a helium white dwarf with a hydrogen-burning red giant branch star during a common envelope phase followed by a helium flash in a rotating core which mixes carbon to the surface. All the channels together give ten times more early-R stars than we require to match recent Hipparcos observations - we discuss which channels are likely to be the true early-R stars and which are not. For the first time we have constructed a viable model of the early-R stars with which we can test some of our ideas regarding common envelope evolution in giants, stellar mergers, rotation, the helium flash and the origin of the early-R stars.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.