Abstract
There is no general agreement on the origin of the binaural interaction (BI) component in auditory brainstem responses (ABRs). To study this issue the ABRs to monaural and binaural clicks with various interaural time differences (ITDs) were simultaneously recorded from the vertex and from a recording electrode aiming at the superior olive (SO) in cats. Electrode path was along the fibers of the lateral lemniscus (LL). Binaural difference potentials (BDPs), which were computed by subtracting the sum of the two monaural responses from the binaural response, were obtained at systematic depths and across a range of ITD values. It was observed that only a specific BDP deflection recorded at the level at which lemniscal fibers terminate in the nuclei of LL coincided in time with the most prominent BDP in the cat’s vertex-recorded ABRs, the BDP in their wave P4. As ITD was increased, the latency shifts and amplitude decrements of the scalp-recorded far-field BDP wave exactly followed those recorded at this lemniscal near-field BDP locus. The data support our hypothesis that the BI component in wave P4 results from a binaural reduction in dischargings of axons ascending in the LL, with this reduction due to contralateral inhibition of the discharge activity of the inhibitory–excitatory units in the lateral nucleus of the SO. Furthermore, at the level of the SO, the BDP in the responses to contra-leading binaural clicks always had larger magnitudes than those evoked by ipsi-leading ones. This bilateral asymmetry is consistent with the view that the BDP in scalp-recorded ABRs is related to the function of sound lateralization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.