Abstract

The structures of the key classes of biological macromolecules: proteins, nucleic acids and polysaccharides can be dissected into very regular motifs, which are alpha-, beta, and double helices and sheets. In this communication we demonstrate that these regular patterns arise as a result of dipole-dipole interactions of the polar groups (peptide, nucleic-acid-base or sugar-ring groups) and the coupling of these interactions with backbone-local interactions, described at the mean-field level; the averaging is carried out by rotating the dipole of a polar unit about its virtual-bond axis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.