Abstract

AbstractThe structural origin of the temperature‐dependent ferroelectricity in Si‐doped HfO2 thin films is systematically examined. From temperature‐dependent polarization‐electric field measurements, it is shown that remanent polarization increases with decreasing temperature. Concurrently, grazing incidence X‐ray diffraction shows an increase in the orthorhombic phase fraction with decreasing temperature. The temperature‐dependent evolution of structural and ferroelectric properties is believed to be highly promising for the electrocaloric cooling application. Magnetization measurements do not provide any indication for a change of magnetization within the temperature range for the strong crystalline phase transition, suggesting that magnetic and structural properties are comparatively decoupled. The results are believed to provide the first direct proof of the strongly coupled evolution of structural and electrical properties with varying temperature in fluorite oxide ferroelectrics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.