Abstract

Understanding the physicochemical properties of hydrogel surfaces and their molecular origins is important for their applications. In this paper, we elucidate the molecular origin of surface charges in double-network hydrogels synthesized by two-step sequential polymerization. Synthesis of hydrogels by free-radical polymerization does not fully complete the reaction, leaving a small number of unreacted monomers. When this approach is used to synthesize double network (DN) hydrogels by a two-step sequential polymerization from charged monomers for the first network and neutral monomers for the second network, the unreacted first network monomers are incorporated into the second network. Since the surface of such DN hydrogels is covered with a μm-thick layer of the neutral second network, the incorporation of a small amount of charged monomers into the second network increases the surface charge and, thereby, their repulsive/adhesive properties. Therefore, we propose a method to remove unreacted monomers and modulate the surface charge density of DN hydrogels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call