Abstract

Subdiffusive kinetics are popular in proteins and peptides as observed in experiments and simulations. For protein systems with diverse interactions, are there multiple mechanisms to produce the common subdiffusion behavior? To approach this problem, long trajectories of two model peptides are simulated to study the mechanism of subdiffusion and the relations with their interactions. The free-energy profiles and the subdiffusive kinetics are observed for these two peptides. A hierarchical plateau analysis is employed to extract the features of the landscape from the mean square of displacement. The mechanism of subdiffusions can be postulated by comparing the exponents by simulations with those based on various models. The results indicate that the mechanisms of these two peptides are different and are related to the characteristics of their energy landscapes. The subdiffusion of the flexible peptide is mainly caused by depth distribution of traps on the energy landscape, while the subdiffusion of the helical peptide is attributed to the fractal topology of local minima on the landscape. The emergence of these different mechanisms reflects different kinetic scenarios in peptide systems though the peptides behave in a similar way of diffusion. To confirm these ideas, the transition networks between various conformations of these peptides are generated. Based on the network description, the controlled kinetics based only on the topology of the networks are calculated and compared with the results based on simulations. For the flexible peptide, the feature of controlled diffusion is distinct from that of simulation, and for the helical peptide, two kinds of kinetics have a similar exponent of subdiffusion. These results further exemplify the importance of the landscape topology in the kinetics of structural proteins and the effect of depth distribution of traps for the subdiffusion of disordered peptides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.