Abstract

Polyethylene glycol (PEG), a water-soluble non-ionic polymer, finds diverse applications from Li-ion batteries to drug delivery. The effectiveness of PEG in these contexts hinges on water's behavior at PEG/water interfaces. Employing heterodyne-detected vibrational sum frequency generation and Raman spectroscopy along with a novel analytical approach, termed difference spectroscopy with simultaneous curve-fitting analysis, we observed that water exhibits both "hydrogen-up" and "hydrogen-down" orientations at PEG(≥400u)/water interfaces. As the molar mass of PEG increases, the contribution of the strongly hydrogen-bonded and H-up-oriented water rises. We propose that the PEG-affected interfacial water originates from the asymmetrical hydration of the surface-adsorbed PEG, as evidenced by the resemblance between the water spectra in the hydration shell of PEG and those at the PEG/water interface. These findings elucidate the molecular mechanism underlying PEG's catalytic role in water splitting at membrane interfaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call