Abstract

To overcome the brittleness of metallic glasses (MGs), their structure, chemistry, or loading conditions are usually controlled. Here, the local stress state in MGs was modulated without affecting their structure. The elastically designed MG heterostructures provide enhanced ductility together with strain hardening during loading. The stress heterogeneity leads to shear band multiplication that consequently enhances the macroscopic ductility of MGs. In addition, the residual compressive stress significantly increases the strength of the glass and is responsible for the observed strain hardening.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call