Abstract

Molecular dynamics simulations of atomically thin, fluid films confined between two solid plates are described. For a broad range of parameters, a generic stick-slip motion is observed, consistent with the results of recent boundary lubrication experiments. Static plates induce crystalline order in the film. Stick-slip motion involves periodic shear-melting transitions and recrystllization of the film. Uniform motion occurs at high velocities where the film no longer has time to order. These results indicate that the origin of stick-slip motion is thermodynamic instability of the sliding state, rather than a dynamic instability as usually assumed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.