Abstract

Cubic and hexagonal boron nitride (cBN and hBN) heterojunctions to n-type Si are fabricated under low-energy ion bombardment by inductively coupled plasma-enhanced chemical vapor deposition using the chemistry of fluorine. The sp2-bonded BN/Si heterojunction shows no rectification, while the cBN/sp2BN/Si heterojunction has rectification properties analogue to typical p-n junction diodes despite a large thickness (∼130 nm) of the sp2BN interlayer. The current-voltage characteristics at temperatures up to 573 K are governed by thermal excitation of carriers, and mostly described with the ideal diode equation and the Frenkel-Poole emission model at low and high bias voltages, respectively. The rectification in the cBN/sp2BN/Si heterojunction is caused by a bias-dependent change in the barrier height for holes arising from stronger p-type conduction in the cBN layer and enhanced with the thick sp2BN interlayer for impeding the reverse current flow at defect levels mainly associated with grain boundaries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call