Abstract

The Turonian stromatolite-bearing condensed sequence in the Polish Jura Chain (the European epicontinental basin) provides good insight into the environment of formation of Cretaceous phosphatic stromatolites, owing to their purely phosphatic development and negligible post-depositional alteration. The sequence developed as a result of slow pelagic sedimentation and microbial mat phosphatization on a submarine swell surrounded by local basins with non-condensed carbonate deposition. Diagenesis of organic matter and dissolution of biogenic apatite were the major sources of reactive phosphorus for the microbial mat phosphatization. Stromatolite growth occurred due to pulses of amorphous or poorly ordered calcium phosphate precipitation followed by crystallization of carbonate fluorapatite (CFA). The phosphogenic environment left an imprint on the isotopic composition of limestone carbon and lattice-bound carbon and sulphur in CFA, and on the light rare-earth element (LREE) distribution in CFA. The δ13C of the stromatolite-bearing sequence shows a negative excursion (−1 to −3‰), standing in marked contrast to positive carbon values of the surrounding basinal carbonate. Most of the δ34S values of CFA (+20 to +21‰) fit the value range of the coeval seawater sulphate, and the LREE distribution shows a well-defined seawater pattern. This geochemical signature is indicative of intense diagenesis of organic matter at the seafloor, pelagic carbonate dissolution, and prolonged exposure of the deposited phosphate towards the water column. The enhanced deposition and diagenesis of organic phosphorus in the stromatolitic environment reflects elevated levels of the epicontinental basin nutrification related to sea-level rises and the associated oceanographic and geochemical changes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call