Abstract

Panchromatic absorbers that have robust photophysical properties enable new designs for molecular-based light-harvesting systems. Herein, we report experimental and theoretical studies of the spectral, redox, and excited-state properties of a series of perylene-monoimide-ethyne-porphyrin arrays wherein the number of perylene-monoimide units is stepped from one to four. In the arrays, a profound shift of absorption intensity from the strong violet-blue (B y and B x) bands of typical porphyrins into the green, red, and near-infrared (Q x and Q y) regions stems from mixing of chromophore and tetrapyrrole molecular orbitals (MOs), which gives multiplets of MOs having electron density spread over the entire array. This reduces the extensive mixing between porphyrin excited-state configurations and the transition-dipole addition and subtraction that normally leads to intense B and weak Q bands. Reduced configurational mixing derives from moderate effects of the ethyne and perylene on the MO energies and a more substantial effect of electron-density delocalization to reduce the configuration-interaction energy. Quantitative oscillator-strength analysis shows that porphyrin intensity is also shifted into the perylene-like green-region absorption and that the ethyne linkers lend absorption intensity. The reduced porphyrin configurational mixing also endows the S1 state with bacteriochlorin-like properties, including a 1-5 ns lifetime.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.