Abstract

The planar morphology of the backbone significantly contributes to the subtle optoelectronic features of π-conjugated polymers. On the other hand, the atomistic tuning of an otherwise identical π-backbone could also impact optoelectronic properties systematically. In this manuscript, we compare a series of 3,4-cycloalkylchalcogenophenes by tuning them atomistically using group-16 elements. Additionally, the effect of systematically extending these building blocks in the form of oligomers and polymers is studied. The size of the 3,4-substitution affected the morphology of the oligomers. In addition, the heteroatoms contributed to a further alteration in their geometry and resultant optoelectronic properties. The chalcogenophenes, containing smaller 3,4-cycloalkanes, resulted in lower bandgap oligomers or polymers compared to those with larger 3,4-cycloalkanes. Natural bonding orbital (NBO) calculations were performed to understand the disparity alongside the contour maps of frontier molecular orbitals (FMO).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call