Abstract

To date, no conclusive evidence has been presented for the existence of neuronal-like elements in Porifera (sponges). In the present study, isolated cells from the marine sponge Geodia cydonium are shown to react to the excitatory amino acid glutamate with an increase in the concentration of intracellular calcium [Ca2+]i. This effect can also be observed when the compounds L-quisqualic acid (L-QA) or L-(+)-2-amino-4-phosphonobutyric acid (L-AP-4) are used. The effect of L-QA and L-AP-4, both agonists for metabotropic glutamate receptors (mGluRs), can be abolished by the antagonist of group I mGluRs, (RS)-alpha-methyl-4-carboxyphenylglycine. These data suggest that sponge cells contain an mGluR-like protein. A cDNA encoding rat mGluR subtype 1 has been used to identify the complete nucleotide sequence of G. cydonium cDNA coding for a 528-amino-acid-long protein (59 kDa) that displays marked overall similarity to mGluRs and to gamma-aminobutyric acid B receptors. The deduced sponge polypeptide, termed putative mGlu/GABA-like receptor, displays the highest similarity to the two families of metabotropic receptors within the transmembrane segment. The N-terminal part of the sponge sequence shows similarity to mGluR4 and mGluR5. These findings suggest that the earliest evolutionary metazoan phylum, the Porifera, possesses a sophisticated intercellular communication and signaling system, as seen in the neuronal network of higher Metazoa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.