Abstract

A detailed study of the effect of reaction temperature, time, and cocatalyst composition on the ethylene polymerization performance of 2-[1-(2,6-dibenzhydryl-4-chlorophenylimino)ethyl]-6-(1-mesityliminoethyl)pyridyliron dichloride (1) is reported. In the presence of modified methylaluminoxane (MMAO), 1 behaves like a highly active, “multisite-like” ethylene polymerization catalyst, with the resulting polyethylenes having time-dependent bimodal-like molecular-weight distributions and featuring saturated (n-propyl- and i-butyl-terminated) chain ends. To readily distinguish between bimodal and bimodal-like molecular-weight distributions, we have proposed the use of the dNf/(d log M) – log M representation further to the mainstream dWf/(d log M) – log M one. The consensus mechanism of chain transfer and chain-end formation in the presence of MMAO has been proposed, which explains the composition and amount of terminal alkyl groups in the polymer, and the apparent “multisite-like” nature of the iron catalyst. ...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call