Abstract

The multiferroic β-NaFeO2 is theoretically investigated for the first time using a microscopic model and Green’s function technique. A small room-temperature ferromagnetism is observed, which could be explained by canting of the antiferromagnetic sublattices. The ferromagnetic behaviour can be applied to applications in spintronic devices. We have investigated the temperature and magnetic field dependence of the spontaneous polarization Ps, as calculated from the transverse Ising model and the spin-assisted polarization ΔP due to magnetostriction and antisymmetric Dzyaloshinsky–Moriya interactions. The influence of external magnetic fields along the y and z axis is discussed. This is indirect evidence for the multiferroic behaviour of NaFeO2. The temperature dependence of the relative dielectric permittivity is calculated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.