Abstract
Mud volcanoes are structures formed as a result of the emissions on a land surface or the sea floor of argillaceous material, which is composed of erupting remobilized mud, petroliferous or magmatic gases, and high-salinity water. Recently, large constructions have been planned deep underground besed on the expectation of geological stability. Therefore, it is important to study the origin of erupted mud and groundwater and the depths from which they ascend when evaluating long-term stability. Three active mud volcanoes and a passive mud volcano are found in the Tertiary Shiiya Formation distributed in Tokamachi City, southern part of Niigata Prefecture. Detailed descriptions of the mud volcanoes are provided by Shinya and Tanaka (2005). However, the origin of erupted mud and the formation mechanism of abnormal pore water pressure have not yet been identified. The authors measured the oxygen and hydrogen isotopic ratio of groundwater and vitrinite reflectance of coal fragments separated from erupted mud of an active mud volcano to investigate the origin of erupted mud, particularly the depth of the origin, and the formation mechanism of abnormal pore water pressure. As a result, δ18O and δD values of erupted water are 1.2‰, -5‰ respectively, showing good agreement with those of the Nanatani Formation distributed at a depth of 3400 m in depth in the studied area. Vitrinite reflectance (Ro) shows a bimodal distribution (i.e., 0.3-1.2% and 1.5-1.8%). Ro value of coal fragments sampled from the Shiiya Formation at the outcrop in the studied area are 0.3-0.45%. High Ro (1.5-1.8%) values of coal fragments are obtained in core samples at a depth of 4000 m in the Gimyo SK-1 oil well, which was excavated 2 km NW from the mud volcano. As a result of an investigation of erupted materials at the mud volcano, they were found to have originated at depths of from 3400 m to 4000 m in the studied area. Geothermal temperature of underground at depth of 3400 m to 4000 m in the in the studied area is estimated to be about 120°C to 150°C. Estimated temperature is high enough to cause diagenetic transition from smectite to illite. Transition from smectite to illite results in the release of a large volume of pore water into the sediment. It is concluded that dehydration due to mineral transition might be the major reason for abnormal pore water pressure formation at depths of 3500 m to 4000 m in the study area.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.