Abstract

The origin of Mars’s small moons, Phobos and Deimos, remains unknown. They are typically thought either to be captured asteroids or to have accreted from a debris disk produced by a giant impact. Here, we present an alternative scenario wherein fragments of a tidally disrupted asteroid are captured and evolve into a collisional proto-satellite disk. We simulate the initial disruption and the fragments’ subsequent orbital evolution. We find that tens of percent of an unbound asteroid’s mass can be captured and survive beyond collisional timescales, across a broad range of periapsis distances, speeds, masses, spins, and orientations in the Sun–Mars frame. Furthermore, more than one percent of the asteroid’s mass could evolve to circularise in the moons’ accretion region. This implies a lower mass requirement for the parent body than that for a giant impact, which could increase the likelihood of this route to forming a proto-satellite disk that, unlike direct capture, could also naturally explain the moons’ orbits. These three formation scenarios each imply different properties of Mars’s moons to be tested by upcoming spacecraft missions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.