Abstract

In eusocial insects, sex allocation often constitutes a ground for intracolonial conflicts. This occurrence provides ideal opportunities to test kin-selection theory. A vast literature on this topic is available for social Hymenoptera, but the same field remains almost untouched in termites. A preeminent case is that of some species of Coptotermes, where the sex-allocation ratio in nymphs shifts from near equity to all-male when the primary reproductives are replaced by neotenics. To shed light on the developmental origin of this shift, we compared the sex ratio of the various castes and instars in primary- and neotenic-headed mature colonies of Coptotermes lacteus. The male-biased sex allocation in the latter type of colony results from two concurrent events: first, the sex ratio of the youngest instars (larvae) is male-biased by a 3:1 ratio; and second, all female larvae become workers, while a large fraction of the male larvae proceed to the nymphal and alate stages. Colony-founding experiments showed that inbreeding by itself cannot account for the male bias at hatching. We suggest that both genetic factors, due to the reproductive behaviour of neotenics, and environmental factors (colony condition and resource availability) may influence this process. Their exact nature and respective impact have not yet been clarified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.