Abstract

Abstract An improved treatment of diabatic heating due to moist convection is introduced into the dynamical model used in Part I of this paper to further investigate the origin of intraseasonal oscillations in the tropics. The convective heating in the model is parameterized by a simple one-dimensional cloud model which takes into account the available moisture supply in the lower troposphere and the mean thermodynamic states for the entire troposphere. Consequently, the spatial distribution of convective heating in the model can be determined internally as a function of the sea surface temperature consistent with observed convection-SST relationship in the tropics. The periods of low-frequency oscillations excited in the numerical simulations range from 20 to 50 days depending primarily on the vertical distribution of heating through condensation-moisture-convergence feedback or “mobile wave-CISK” The “fast” wave (period around 20 days) is excited by deep convection which has heating maximum at or above ...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call