Abstract

Most meteoritic calcium-rich, aluminum-rich inclusions formed from a reservoir with 26Al/27Al ≈ 5 × 10−5, but some record lower , demanding they sampled a reservoir without live 26Al. This has been interpreted as evidence for “late injection” of supernova material into our protoplanetary disk. We instead interpret the heterogeneity as chemical, demonstrating that these inclusions are strongly associated with the refractory phases corundum or hibonite. We name them “low-26Al/27Al corundum/hibonite inclusions” (LAACHIs). We present a detailed astrophysical model for LAACHI formation in which they derive their Al from presolar corundum, spinel, or hibonite grains 0.5–2 μm in size with no live 26Al; live 26Al is carried on smaller (<50 nm) presolar chromium spinel grains from recent nearby Wolf–Rayet stars or supernovae. In hot (≈1350–1425 K) regions of the disk, these grains and perovskite grains would be the only survivors. These negatively charged grains would grow to sizes 1–103 μm, even incorporating positively charged perovskite grains, but not the small, negatively charged 26Al-bearing grains. Chemical and isotopic fractionations due to grain charging was a significant process in hot regions of the disk. Our model explains the sizes, compositions, oxygen isotopic signatures, and the large, correlated 48Ca and 50Ti anomalies (if carried by presolar perovskite) of LAACHIs, and especially how they incorporated no 26Al in a solar nebula with uniform, canonical 26Al/27Al. A late injection of supernova material is obviated, although formation of the Sun in a high-mass star-forming region is demanded.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.