Abstract

In this Rapid Communication, the Rayleigh-Taylor instability (RTI) along the density interfaces of gravity current fronts is analyzed. Both the location and the spanwise wave number of the most unstable mode determined by the local dispersion relation agree with those of the strongest perturbation obtained from numerical simulations, suggesting that the original formation mechanism of lobes and clefts at the current front is RTI. Furthermore, the predictions of the semi-infinite RTI model, i.e., the original dominating spanwise wave number of the Boussinesq current substantially depends on the Prandtl number and has a 1/3 scaling law with the Grashof number, are confirmed by the three-dimensional numerical simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call