Abstract
Lithium metal has the lowest standard electrochemical redox potential and very high theoretical specific capacity, making it the ultimate anode material for rechargeable batteries. However, its application in batteries has been impeded by the formation of Li whiskers, which consume the electrolyte, deplete active Li and may lead to short-circuit of the battery. Tackling these issues successfully is dependent on acquiring sufficient understanding of the formation mechanisms and growth of Li whiskers under the mechanical constraints of a separator. Here, by coupling an atomic force microscopy cantilever into a solid open-cell set-up in environmental transmission electron microscopy, we directly capture the nucleation and growth behaviour of Li whiskers under elastic constraint. We show that Li deposition is initiated by a sluggish nucleation of a single crystalline Li particle, with no preferential growth directions. Remarkably, we find that retarded surface transport of Li plays a decisive role in the subsequent deposition morphology. We then explore the validity of these findings in practical cells using a series of carbonate-poisoned ether-based electrolytes. Finally, we show that Li whiskers can yield, buckle, kink or stop growing under certain elastic constraints.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.