Abstract

The damping of magnetization, represented by the rate at which it relaxes to equilibrium, is successfully modeled as a phenomenological extension in the Landau-Lifschitz-Gilbert equation. This is the damping torque term known as Gilbert damping and its direction is given by the vector product of the magnetization and its time derivative. Here we derive the Gilbert term from first-principles by a nonrelativistic expansion of the Dirac equation. We find that this term arises when one calculates the time evolution of the spin observable in the presence of the full spin-orbital coupling terms, while recognizing the relationship between the curl of the electric field and the time-varying magnetic induction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.