Abstract

Two-dimensional transition-metal (TM)-doped transition metal dichalcogenides (TMDs) are among the most promising materials for water-splitting catalysts. Among various methods applied to promote the hydrogen evolution reaction (HER) in TMDs, doping with TM heteroatoms has attracted attention because this strategy allows optimization of hydrogen adsorption and H2 generation reactions. Herein, we conduct in-depth, systematic analyses of the trends in the change in the hydrogen adsorption free energy (ΔGH∗)—the most well-known descriptor for evaluating HER performance—for doped TMDs. The total of 150 different doped TMDs are used to conduct an atomic-level analysis of the origin of ΔGH∗ changes upon TM heteroatom doping. Moreover, we suggest two key factors that govern hydrogen adsorption over doped TMDs: 1) changes in the charge of chalcogen atoms, where hydrogen atoms are adsorbed onto early-TM-doped structures and 2) structural deformation energies accompanying the introduced dopants of the late-TM-doped structures. Furthermore, we propose a new perspective on how vacancies in TM-doped TMDs can result in the enhanced ΔGH∗ for the HER. We suggest that introducing electrostatic and structural controls in early- and late-TM-doped systems, respectively, are effective strategies for achieving thermoneutral ΔGH∗ in TMDs and promote the design of new TMD catalysts with superior water-splitting capabilities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.