Abstract

Phosphide-based thermoelectrics are a relatively less studied class of compounds, primarily due to the presence of light elements, which result in high thermal conductivity and inherent stability problems. In this work, we present a stable phosphide-tetrahedrite, Ag6Ge10P12, which possesses the highest zT (∼0.7) among all known phosphides at intermediate temperatures (750 K). We examine the intrinsic electronic and thermal transport properties of this compound by expressing the transport properties in terms of weighted mobility (μW), transport coefficient (σE0), and material quality factor (B), from which we are able to elucidate that the origin of its high zT can be attributed to the platelike Fermi surface and high level of band multiplicity related to its complex band structure. Finally, we discuss the origin of the low lattice thermal conductivity observed in this compound using experimental sound velocity, elastic properties, and Debye-Callaway model, thus laying the foundation for similar stable phosphides as potentially earth-abundant and nontoxic intermediate-temperature thermoelectric materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.