Abstract

Herein, the energy level alignment and electron recombination kinetics in solid state dye-sensitized solar cells (DSCs) employing a solid polymer electrolyte (SPE) have been quantitatively characterized. In order to determine the microscopic origin of the enhanced characteristics in polymer electrolytes, we carried out an extensive study of the photovoltaic properties with respect to the electrolyte type and composition, including a liquid electrolyte (LE) and various salt types and concentrations. We observed a smaller downward shift in the conduction band energy of the TiO2 layer upon contact with the SPE as well as a retarded electron recombination rate. These led to an increase in the Voc for DSCs with an SPE, which is mostly attributable to the coordinative interactions of the ethylene oxide (EO) units in poly(ethylene oxide) (PEO) and poly(ethylene glycol) dimethyl ether (PEGDME) with metallic Li+ ions and Ti atoms. Such coordinative interactions induce 1) the capture of Li+ cations in the bulk of the polymer electrolyte, thereby reducing their effective concentration and 2) the facile formation of a PEO passivation layer on top of the TiO2 layer. Therefore, it was concluded that the high Voc in solid state DSCs employing a polymer electrolyte is attributable to the coordinative properties of the EO units in PEO and PEGDME in the SPE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.