Abstract

The Macquarie Ridge Complex (MRC), located at the Australian–Pacific plate boundary south of New Zealand, is a rugged bathymetric ridge comprising a series of submarine seamounts and Macquarie Island, the only subaerial portion of the complex. Mid-ocean ridge basalts (MORBs) from Macquarie Island show various enrichments in incompatible elements with compositions ranging from typical normal MORB to enriched MORB. However, these basalts have isotopic compositions trending towards a high μ-like (μ = 238U/204Pb; HIMU) mantle component, which is unusual for MORB-type rocks. The origin of this mantle signature is not understood, and it is unclear whether this isotopic signature is characteristic of the entire MRC or unique to Macquarie Island. Here we report new major and trace element abundances, and Sr, Nd, and Pb isotopes for samples from the MRC seamounts and from new sampling sites on Macquarie Island. The geochemical and isotopic data show that the entire MRC comprises normal to enriched MORB. Mixing modelling indicates that the heterogeneous isotopic signatures of the MRC basalts are not derived from contamination of the nearby Balleny mantle plume but have affinities with that of the Cenozoic Zealandia intraplate HIMU-like basalts. We propose that the heterogeneous geochemical signatures of the MRC basalts are derived from amphibole-bearing garnet pyroxenite veins, which is supported by the rare earth element partial melting modelling and strong correlations between Nd and Pb isotopic ratios vs La/Sm. We posit that the pyroxenite veins were generated in the oceanic lithospheric mantle, which was metasomatised by hydrous and carbonatitic fluids/melts derived either from delaminated, metasomatised Zealandia subcontinental lithosphere mantle, or from subducted material in the asthenosphere. The subducted material could be derived from ancient and/or recent subduction along the former east Gondwana margin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.