Abstract

The real and imaginary parts of complex-dielectric (ε′, ε'') and electric-modulus (M′, M″), dielectric loss tangent (tanδ), and conductivity (σ) values of Al/(Cd0.3Zn0.7O)/p-Si Schottky Diode (SD) were obtained from capacitance/conductance vs. voltage/frequency (C/G-V-f) plots. Negative dielectric (ND) was observed under 50 kHz at about 3.5 V and the increase in the ε'' results from a drop in ND with increasing voltage, also known as inductive behavior. The rise in σac at high frequencies causes the eddy-current to grow, which in turn causes the ε” or tanδ to increase. While the relaxation process causes the value of M′ to decrease with increasing voltage, M″-V graphs reveal a peak at roughly 0.0V for each frequency. The obtained value of ε′ for Al/(Cd0.3Zn0.7O)/p-Si at 500 Hz is about 25 times higher than those using traditional SiO2 as an interfacial layer, and so it can be successfully used for more charge or energy storage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call