Abstract

Numerous studies have shown the primary importance of wind stress curl in coastal upwelling dynamics. The main goal of this new analysis is to describe the QuikSCAT surface wind stress curl at various scales in the Benguela and Canary upwelling systems. The dominant spatial pattern is characterized by cyclonic curl near continental boundaries and anticyclonic curl offshore, in association with equatorward alongshore (upwelling favorable) wind stress. At a smaller scale, we demonstrate the sensitivity of the QuikSCAT wind stress curl to coastal processes related to sea surface temperature (SST) mesoscale fluctuations by presenting a linear relationship between the curl and crosswind SST gradients. Despite the spatial and temporal sensitivity of the underlying thermal coupling coefficient, a local analysis of the fraction of the curl ascribed to SST variability shows that SST is a main driver of the wind stress curl variability and magnitude over the upwelling extension zone (∼100–300 km from the coast) in both the Canary and Benguela systems. Closer to the shore, the curl patterns derived from QuikSCAT observations are only loosely related to SST-wind interactions. As a working hypothesis, they can also be associated with the coastline geometry and orographic effects that are likely to play an important role in local cooling processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.