Abstract

AbstractFe‐Mn based layered oxides are recognized as promising cathode materials for sodium‐ion batteries (SIBs) with high capacities and earth‐abundant ingredients. However, their real‐world applications are still constrained by fast capacity decay accompanied with the requirements of deeper insights into the principles behind. Herein, taking O3‐NaxFe1/2Mn1/2O2 as a classic sample, the capacity fading mechanism of Fe‐Mn based layered oxides is comprehensively investigated through combined techniques. For the first time, it is revealed that Fe migration is merely triggered after the oxidation of ≈0.3 mol Fe3+ based on solid proofs from ex situ X‐ray absorption spectroscopy and Mössbauer spectroscopy, which implies the crucial role of the accumulated structural distortion induced by Jahn–Teller active Fe4+. O3‐P3 phase transition during cycling is obviously constrained along with Fe migration as evidenced by in situ/ex situ X‐ray diffraction, well interpreting the intensified polarization and the resulting large capacity loss. More importantly, within the desodiation depth (≈80% of sodium extraction) where Fe migration is almost absent, the capacity fading is dominantly rooted in the Fe4+ activated and Mn‐dissolution aggravated surface passivation as confirmed by mass/X‐ray spectroscopies and electrochemical analysis. These renewed understandings of the fast capacity decay in Fe‐Mn based layered oxides offer clearer clues for designing desirable cathodes for SIBs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.