Abstract

Oxygen ingression has been shown to substantially decrease the carrier lifetime of Sn-based perovskites, behind which the mechanism remains yet unknown. Our first-principles calculations reveal that in prototypical MASnI3 (MA = CH3NH3), oxygen by itself is not a recombination center. Instead, it tends to form substitutional OI through combining with native I vacancies (VI) and remarkably increases the original recombination rate of VI by 2-3 orders of magnitude. This rationalizes the experimentally observed sharp decline of carrier lifetime in perovskites exposed to air. The significantly enhanced carrier recombination is due to a smaller electron capture barrier of OI, resulting from lattice strengthening and the suppressed structural relaxation upon electron capture. These insights offer a route to further improve device performance via anion engineering in broad Sn-based perovskite optoelectronics operating in ambient air. Moreover, our results highlight the important role of lattice relaxation for nonradiative carrier capture in materials in general.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.