Abstract
Recently, ultralong phosphorescence lifetime has been observed in 4,6-diethoxy-2-carbazolyl-1,3,5-triazine, and H-aggregation induced stabilization of the T1 state was suggested as its source. The response theory calculations demonstrate that the Davydov stabilization of the T1 state of the dimer is marginal with respect to the monomer and the corresponding transition moments are virtually the same. Moreover, the calculated radiative rate constant is far from the experimental value, indicating that the ultralong lifetime is not likely to be of electronic origin only. Our calculations reveal that the dual-peak emission from the T1 state is due to strong vibronic coupling between the T1 and S0 states along selected normal modes. Interestingly, the calculated vibronic radiative rate constant of the dimer (2.33 × 10-3 s-1) is comparable to the experimental value (4.7 × 10-3 s-1), supporting the notion that vibronic contributions to the transition moment are responsible for the ultralong lifetime observed in the bulk system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.