Abstract
Long strings of photovoltaic (PV) modules are found to be vulnerable to shading effects, causing significant reduction in the system power output. To overcome this, distributed maximum power point-tracking (DMPPT) schemes have been proposed, in which individual dc-dc converters are connected to each PV module to enable module-wise maximum power extraction. There are two main concepts to implement DMMPT systems: series and parallel configuration, describing the connection of the output terminals of the converters. Both systems are studied intensively, with innovative solutions to encountered operational challenges and novel control methods. However, a comprehensive dynamic model for neither system has been presented so far. This paper fills the gap by presenting small-signal models for both configurations, explaining the observed operational peculiarities. The analytical claims are verified with a practical system comprising two maximum power point-tracking buck-boost converters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.