Abstract

To understand the origin of the laminated appearance of cartilage in MRI (the magic angle effect), microscopic MRI (mu MRI) experiments were performed at 14-microns pixel resolution on normal canine articular cartilage from the shoulder joints. Two-dimensional images of the spin-spin relaxation time (T2) of the cartilage-bone plug at two angles (0 degree and 55 degrees) were calculated quantitatively. A distinct T2 anisotropy was observed as a function of the cartilage tissue depth. The surface and the deep regions exhibit strong orientational dependence of T2, whereas the upper-middle region exhibits little orientational dependence of T2. These three mu MRI regions correspond approximately to the three histologic zones in cartilage tissue. The results from the bulk T2 measurements agreed with these mu MRI results. Our studies show that the laminated appearance of cartilage in MRI is caused by T2 anisotropy of the tissue. We further suggest that the molecular origin of the T2 anisotropy is the nuclear dipolar interaction. The structure of the cartilage tissue indicates that the collagen meshwork defines this T2 anisotropy. The results show that the T2 anisotropy provides an indirect but sensitive indicator for the orientation of macromolecular structures in cartilage. The clinical implications of this anisotropy are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.