Abstract

By comparing optical spectral results of both Sn-rich and Sn-poor Cu2ZnSnS4 (CZTS) with the previously calculated defect levels, we confirm that the band-tail states in CZTS originate from the high concentration of 2CuZn + SnZn defect clusters, whereas the deep-donor states originate from the high concentration of SnZn. In Sn-rich CZTS, the absorption, reflectance, and photocurrent (PC) spectra show band-tail states that shrink the bandgap to only ∼1.34 eV, while photoluminescence (PL) and PC spectra consistently show that abundant CuZn + SnZn donor states produce a PL peak at ∼1.17 eV and abundant SnZn deep-donor states produce a PL peak near 0.85 eV. In contrast, Sn-poor CZTS shows neither bandgap shrinking nor any deep-donor-defect induced PL and PC signals. These results highlight that a Sn-poor composition is critical for the reduction of band-tailing effects and deep-donor defects and thus the overcoming of the severe open-circuit voltage (Voc) deficiency problem in CZTS solar cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.