Abstract
Seismic anisotropy is ubiquitous in the Earth's mantle but strongest in its thermo-mechanical boundary layers. Azimuthal anisotropy in the oceanic lithosphere and asthenosphere can be imaged by surface waves and should be particularly straightforward to relate to well-understood plate kinematics and large-scale mantle flow. However, previous studies have come to mixed conclusions as to the depth extent of the applicability of paleo-spreading and mantle flow models of anisotropy, and no simple, globally valid, relationships exist. Here, we show that lattice preferred orientation (LPO) inferred from mantle flow computations produces a plausible global background model for asthenospheric anisotropy underneath oceanic lithosphere. The same is not true for absolute plate motion (APM) models. A ∼200 km thick layer where the flow model LPO matches observations from tomography lies just below the ∼1200°C isotherm of a half-space cooling model, indicating strong temperature-dependence of the processes that control the development of azimuthal anisotropy. We infer that the depth extent of shear, and hence the thickness of a relatively strong oceanic lithosphere, can be mapped this way. These findings for the background model, and ocean-basin specific deviations from the half-space cooling pattern, are found in all of the three recent and independent tomographic models considered. Further exploration of deviations from the background model may be useful for general studies of oceanic plate formation and dynamics as well as regional-scale tectonic analyses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.