Abstract

The structure of electric double layers (EDLs) dictates the chemistry and the physics of electrified interfaces, and the differential capacitance is the key property for characterizing EDLs. Here we develop a theoretical model for computing the differential Helmholtz capacitance CH of oxide–electrolyte interfaces using density functional theory-based finite-field molecular dynamics simulations. It is found that the dipole of interfacial adsorbed groups (i.e., water molecule, hydroxyl ion, and proton) at the electrified SnO2(110)/NaCl interfaces significantly modulates the double layer potential which leads to the asymmetric distribution of CH. We also find that the dissociative water adsorption prefers the inner sphere binding of counterions, which in turn leads to a higher Helmholtz capacitance, compared with that of the nondissociative case at the interface. This work provides a molecular interpretation of asymmetric EDLs seen experimentally in a range of metal oxides/hydroxides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.