Abstract

The absorption coefficient is usually considered as a constant for certain materials at the given wavelength. However, recent experiments demonstrated that the absorption coefficient could be enhanced a lot by the PN junction. The absorption coefficient varies with the thickness of the intrinsic layer in a PIN structure. Here, we interpret the anomalous absorption coefficient from the competition between recombination and drift for non-equilibrium carriers. Based on the Fokker–Planck theory, a non-equilibrium statistical model that describes the relationship between absorption coefficient and material thickness has been proposed. It could predict the experimental data well. Our results can give new ideas to design photoelectric devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.