Abstract

Observations from in situ experiments and planetary orbiters have shown that the sedimentary rocks found at Meridiani Planum, Mars were formed in the presence of acidic surface waters. The water was thought to be brought to the surface by groundwater upwelling, and may represent the last vestiges of the widespread occurrence of liquid water on Mars. However, it is unclear why the surface waters were acidic. Here we use geochemical calculations, constrained by chemical and mineralogical data from the Mars Exploration Rover Opportunity, to show that Fe oxidation and the precipitation of oxidized iron (Fe^(3+)) minerals generate excess acid with respect to the amount of base anions available in the rocks present in outcrop. We suggest that subsurface waters of near-neutral pH and rich in Fe^(2+) were rapidly acidified as iron was oxidized on exposure to O_2 or photo-oxidized by ultraviolet radiation at the martian surface. Temporal variation in surface acidity would have been controlled by the availability of liquid water, and as such, low-pH fluids could be a natural consequence of the aridification of the martian surface. Finally, because iron oxidation at Meridiani would have generated large amounts of gaseous H_2, ultimately derived from the reduction of H_2O, we conclude that surface geochemical processes would have affected the redox state of the early martian atmosphere.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.