Abstract

The calculation of the origin-independent density of the dynamic electric dipole polarizability, previously presented for uncorrelated and density functional theory (DFT)-based methods, has been developed and implemented at the coupled cluster singles and doubles (CCSD) level of theory. A pointwise analysis of polarizability densities calculated for a number of molecules at Hartree-Fock (HF) and CCSD clearly shows that the electron correlation effect is much larger than one would argue considering the integrated dipole electric polarizability alone. Large error compensations occur during the integration process, which hide fairly large deviations mainly located in the internuclear regions. The same is observed when calculated CCSD and B3LYP polarizability densities are compared, with the remarkable feature that positive/negative deviations between CCSD and HF reverse sign, becoming negative/positive when comparing CCSD to B3LYP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.