Abstract
BackgroundSpider plant [Gynandropsis gynandra (L.) Briq.], an economically promising African leafy vegetable, characterized for leaf yield components and nutritive quality, exhibits poor seed germination that hinders a wider expansion of the crop in urban and periurban horticultural systems. So far, there is little information pertaining to seed morphological traits and mineral elements content that may be associated with higher seed germination. This research investigated the hypothesis that spider plants from different geographical areas exhibited differences in seed mineral composition, morphological traits, and germination capacity. To this end, twenty-nine accessions of Gynandropsis gynandra from West and East-Southern Africa, and Asia were screened for variation in seed size (area, perimeter, length, width), 10-seed weight, mean germination time, germination percentage and mineral content variations. The scanning electron microscopy (SEM), light microscopy and energy dispersive spectroscopy (EDS) solution were used to study seed morphology and mineral composition.ResultsWe show for the first time the external and internal structure of the seeds of Gynandropsis gynandra and measured eight mineral elements, including carbon (C), oxygen (O), magnesium (Mg), aluminium (Al), phosphorus (P), sulphur (S), potassium (K) and calcium (Ca). The accessions differed significantly (p < 0.001) with respect to seed size (area, perimeter, length, width), 10-seed weight, mean germination time and germination percentage. The hierarchical cluster analysis based on fourteen variables grouped the accessions into three distinct clusters, partially dependent on their geographical origin. Asian accessions exhibited smaller seeds and recorded higher values in terms of germination percentage. West African accessions had bigger seeds but with lower germination percentage. Variation in minerals such as potassium, carbon, and calcium content showed different patterns according to geographical origins.ConclusionSmaller seeds in G. gynandra exhibited better germination capacity. The Asian germplasm is a potential source of cultivars with a higher germination percentage for improving seed quality in the species.
Highlights
Spider plant [Gynandropsis gynandra (L.) Briq.], an economically promising African leafy vegetable, characterized for leaf yield components and nutritive quality, exhibits poor seed germination that hinders a wider expansion of the crop in urban and periurban horticultural systems
The Asian germplasm is a potential source of cultivars with a higher germination percentage for improving seed quality in the species
Gholami and al [12] observed an increase in germination as well as a greater speed of germination in larger seeds compared with small seeds in the common bean (Phaseolus vulgaris L.)
Summary
Spider plant [Gynandropsis gynandra (L.) Briq.], an economically promising African leafy vegetable, characterized for leaf yield components and nutritive quality, exhibits poor seed germination that hinders a wider expansion of the crop in urban and periurban horticultural systems. This research investigated the hypothesis that spider plants from different geographical areas exhibited differences in seed mineral composition, morphological traits, and germination capacity. To this end, twenty-nine accessions of Gynandropsis gynandra from West and East-Southern Africa, and Asia were screened for variation in seed size (area, perimeter, length, width), 10-seed weight, mean germination time, germination percentage and mineral content variations. It was shown that larger seeds of Amaranthus spp. possessed higher physiological quality [13] than smaller seeds
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.