Abstract

Unintentional nitrogen incorporation has been observed in a set of microwave plasma chemical vapor deposition (MPCVD)-grown samples. No abnormality has been detected on the apparatus especially the base pressure and feeding gas purity. By a comprehensive investigation including the analysis of the plasma composition, we found that a minor leakage of the system could be significantly magnified by the thermal effect, resulting in a considerable residual nitrogen in the diamond material. Moreover, the doping mechanism of leaked air is different to pure nitrogen doping. The dosage of several ppm of pure nitrogen can lead to efficient nitrogen incorporation in diamond, while at least thousands ppm of leaked air is required for detecting obvious residual nitrogen. The difference of the dosage has been ascribed to the suppression effect of oxygen that consumes nitrogen. As the unintentional impurity is basically detrimental to the controllable fabrication of diamond for electronic application, we have provided an effective way to suppress the residual nitrogen in a slightly leaked system by modifying the susceptor geometry. This study indicates that even if a normal base pressure can be reached, the nitrogen residing in the chamber can be “activated” by the thermal effect and thus be incorporated in diamond material grown by a MPCVD reactor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.