Abstract

Inhibin knockout (Inha-/-) mice develop gonadal sex-cord tumors and--when gonadectomized--adrenocortical tumors. Previous reports demonstrated that adrenocortical tumors from Inha-/- mice produce estrogen and depend on gonadotropin signaling for initiation. Here we show that, in addition to producing estrogen, the adrenocortical tumors display a global change in cellular identity, composed of two unique cell types expressing differing arrays of genes normally restricted to theca and granulosa cells of the ovary. Many of these genes are also induced in wild-type adrenals after gonadectomy or upon chronic gonadotropin stimulation, suggesting that the adrenal cortex normally contains a population of pluripotent cells that can be driven toward an adrenal or gonadal identity given the appropriate pituitary stimuli. A central feature of this altered cellular identity is the switch from predominant expression of Gata6 (endogenous to the adrenal cortex) to Gata4, which defines cellular identity in the ovary. We show that stable transfection of Gata4 in cultured adrenocortical cells is sufficient to activate ovarian-specific genes of both theca and granulose lineages. Spatial analysis of Gata4 expression reveals a distinct pattern of localization to the supcapsular region of the adrenal, which contains undifferentiated progenitor cells that continuously populate the adrenocortical zones. Although both wild-type and Inha-/- mice display this pattern, only Inha-/- mice produce tumors composed of these Gata4-positive cells. These data suggest that Inha-/- adrenocortical tumors cells are derived from pluripotent adrenocortical progenitor cells that adopt a gonadal fate due to the convergent loss of inhibin and chronic exposure to elevated gonadotropins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call